

Liberté Égalité Fraternité

Fingerprinting of Bluetooth BR/EDR devices using wideband SDR

Naomi WEIC Margaux BOUGEARD Arnaud RIGOLLÉ

□ Bluetooth : Reference technology for radio connectivity usage

- Standardised [R0] from 1994 with several successive major evolutions : scope focused on <u>BR/EDR only</u>
- Devoted to short-range applications (WPAN)
- Information exchanged via Bluetooth : potentially sensitive

Bluetooth specifications : supposed to guarantee the confidentiality

- Data encryption
- Strengthened by security mechanisms : frequency hopping (FH), whitening , physical address masking

□ Study goals

- Identifying Bluetooth users : fingerprinting
- Sniffing Bluetooth communications

Bluetooth overview

Radio waveform & protocol

- 2.4 GHz ISM band
- FHSS communication system \Rightarrow difficult to sniff
 - 79 contiguous channels with 1 MHz unitary bandwidth
 - switch of channel every Time Slot (625 $\mu s)\,\,\square$ 1600 hops / s
- 6-byte physical address assigned to each device
- 3 modulation schemes \Rightarrow bit rate of 1, 2 or 3 Mbps

- Diffie–Hellman key exchange (Secure Simple Pairing from Bluetooth v2.1)
- Data randomization by whitening
- Data symmetric encryption with E0 or AES-CCM

Security vulnerabilities exploitable via SDR

□ Attacks published exploiting Bluetooth waveform security flaws

- Physical address can be revealed even though supposed to remain secret [R1], [R2]
 - \Rightarrow identifying, locating and tracking Bluetooth equipments
- Clock value can also be retrieved [R3]

 \Rightarrow access to FH pattern

□ Using commercial wideband Software Defined Radio (SDR) enables [R4]

- Instantaneous digitization of Bluetooth wideband radio signal (80 MHz)
- Overcoming FHSS techniques, supposed to ensure the security of the Bluetooth waveform
- Monitoring of different communications and channels in parallel
- Extract information much more quickly
- Interact (Rx/Tx) with target devices on the whole band

Bluetooth piconet

Piconet composition

- 1 master
- Up to 7 slaves

Piconet features

Settings used to control the piconet are derived from the master's characteristics :

- 48-bit physical address for unique identification
- Clock value (28-bit counter) with a 312.5 µs granularity

□ Targeted information

• Get access to both piconet **secret** main features (master physical address and clock) controlling some key algorithms as the FH

Bluetooth Device physical Address (BD_ADDR)

• 24-bit chip number assigned by manufacturer

• 8-bit value, used to control some algorithms in addition to LAP

- 16-bit non-significant part (unused by Bluetooth algorithms)
- retrievable by BF (~128 trials) from UAP + OUI table [R5]

ULAP ⇒ 28-bit entropy used as secret input for FH algorithm

UAP + NAP = 24-bit public number ^[R5] assigned by IEEE and identifying Bluetooth manufacturer

Bluetooth BR/EDR : packet format

□ Access code (AC)

- Identical for all packets Tx in the same piconet
- Constructed from master LAP

Header

Packet control information + HEC (integrity check bits)

Payload

• User data from higher layers + **CRC** (integrity check bits)

Capture of a piconet packet can give access to significant parts of BD_ADDR (after tricky processing)

Accessing the Bluetooth physical layer

Benefits of in-house physical layer development

- Master the protocol
- Access messages managing connection establishment & security (LMP protocol)
- Extract supposedly inaccessible data

Method #1: active fingerprinting using inquiry

□ Method : run inquiry procedure

- Usage of a WB SDR module in active mode
- Any Bluetooth device defined as "discoverable" must answer
- By sending a FHS packet with BD_ADDR full identity & clock

- Unstealthy : radio transmissions required
- Unreliable : target user will never respond if configured as "non-discoverable"
- Many Bluetooth users may answer

Method #2 : passive fingerprinting by WB sniffing

□ Goal = overcoming flaws of method #1

- Remaining stealthy 🛛 **passive** mode
- Reliability : being able to identify a device, even if defined in "non-discoverable" mode

□ Setup

- Usage of a wideband SDR module (Rx only) + a PC for post-processing of digitized IQ samples
- Capture radio signals transmitted within one or several Bluetooth piconet(s)

Method #2 - challenge #1 : BD_ADDR extraction

- Full 48-bit BD_ADDR : LAP + UAP + NAP derived from OUI table [R5]
- 6 bits (CLK₆₋₁) of the master clock

Method #2 - challenge #2 : extract piconet clock

□ Principle [R3] : Brute force the Frequency Hopping algorithm

- FH algorithm : known from Bluetooth specs
- ULAP and CLK₆₋₁: secret values extracted from challenge #1
- CLK 21 missing bits (CLK₂₇₇) can be found by BF

Iterative search

- The list of clock candidates is initialized with all 2²¹ possible values
- For each nth new packet, list is reduced to clock values able to explain the whole observation (from 1 to n)
- Once the list is reduced to 1 single element (after N packets), the piconet clock value is uniquely identified

Method #2 - challenge #2 : extract piconet clock

□ Algorithm convergence

- High initial entropy (21 bits)
- But geometrical progression at each iteration : geometric factor = 79 ⁽²⁾
 ⇒ N = 4 iterations only typically required to find the (unique) piconet clock value ⁽³⁾

Achievements

- Some published attacks on Bluetooth BR/EDR sucessfully replayed
 - 0 Physical address extraction
 - 0 Piconet clock extraction
- Some enhancements implemented and made possible by wideband SDR
 - Faster extraction of targeted information (BD_ADDR and piconet clock)
 - Extension of attacks with RX/TX interaction possible on the whole Bluetooth band between WB-SDR module and targeted devices

Standards

[R0] Bluetooth SIG, 2023-01-31

□ IEEE publications

[R1] D. Spill & A. Bittau, 2007 :

[R2] M. Cominelli et al., 2020 :

Bluetooth Classic Devices

[R3] A. Tabassam & S. Heiss, 2008 :

Defined Radios

SDR tutorial

[R4] National Instruments / Ettus Research

files.ettus.com/manual/page_usrp_x3x0.html

IEEE table

[R5] OUI assignment table

Bluetooth Core Specification V5.4

Bluesniff : Eve meets Alice and Bluetooth

Even Black Cats Cannot Stay Hidden in the Dark : <u>Full-band</u> <u>De-anonymization of</u>

Bluetooth Clock Recovery and Hop Sequence Synchronization Using Software

USRP Hardware Driver and USRP Manual <u>https://</u>

https://standards-oui.ieee.org/oui/oui.txt

		IQ	Name of the complex signal samples digitized by the SDR module, I
AC	Access Code (first temporal part of a Bluetooth packet, used to detect and	designating	the in-phase real channel and Q the quadrature imaginary channel
	synchronize a piconet)	LAP	Lower Address Part (3-byte low order portion of a BD_ADDR address)
AES	Advanced Encryption Standard (symmetric encryption)	LMP	Link Manager Protocol
BD_ADDR	Bluetooth Device Address (physical address of a Bluetooth device, coded	LSB	Least Significant Bit
on 6	bytes)	Mbps	Mega bits per second
BF	Brute Force	MIC	Message Integrity Check
BLE	Bluetooth Low Energy (waveform evolution introduced in 2010 in V4.0	MSB M	lost Significant Bit
standard	version and out of scope of this presentation)	NAP N	on-significant Address Part (2-byte high order portion of a BD_ADDR
BR	Basic Rate (1 st official version – V1.0 - of the standardised Bluetooth	address)	
waveform,		OUI	Organisationally Unique Identifier (number assigned by IEEE
	with a unique modulation rate of 1 Mbps)	identifying the	Bluetooth device manufacturer)
ССМ	Counter with Cipher block chaining Message authentication code	раскет	Message from the Bluetooth physical layer transiting on the radio
CLK	Clock (clock value of the considered Bluetooth piconet, imposed by the		and and final terror and mark of a Diverse the market containing data forma
master)		Payload Ir	hird and final temporal part of a Bluetooth packet containing data from
CRC	Cyclic Redundancy Check (error detection code applied to payload bits)	upper la	yers (4. Differential Quadrature Dhace Chift Kaving (madulation wood for
EO	Bluetooth legacy encryption algorithm	π/4-DQPSK π/	4 Differential Quadrature Phase Shift Reying (modulation used for
EDR	Enhanced Data Rate (Bluetooth waveform evolution introduced in 2004 –		DR wavelorin @ 2 Mbps)
	V2.0 version - enabling 2 higher data rates of 2 and 3 Mbps)		Reception Software Defined Radio (electronic module)
EUI	Extended Unique Identifier		Time Slot (TS duration is equal to 0.625 ms for Pluotooth radio
FEC	Forward Error Correction	13 Wayoform)	
FH	Frequency Hop(ping)		Transmission
FHS	FH Synchronization (a type of Bluetooth control packet)		Upper Address Part (1-bye central portion of a BD_ADDR address)
FHSS	FH Spread Spectrum		28 LSB bits of BD ADDR (4 LIAP LSB bits + LAP) (used to control EH
Fingerprin	ting Identification of the BD_ADDR physical address of a Bluetooth radio device	algorithm)	
GIAC	General Inquiry AC (predefined AC value used to call all Bluetooth devices	WB	Widehand
auring	the inquiry phase)	WPAN	Wireless Personal Area Network
GFSK	Gaussian Frequency Shift Reying (modulation used for Bluetooth BR @ 1	8-DPSK 8-	state Differential Phase Shift Keving (modulation used for Bluetooth
(adam	Cocond tomportal part of a Divisto ath packat	FI	DR waveform @ 3 Mbps)
Header	Second temporal part of a Bidelooth packet Header Error Check (error detection code applied to Header hite)		
	Identity (a type of Plueteeth control packet)		
IEEE	Institute of Electrical and Electronics Engineers	1	
Inquiry	Procedure used by a Bluetooth device to identify other discoverable Bluetooth		
inquiry	aquinments within its radio range		
			16

ISM

Industrial, Scientific and medical (frequency band)

16	