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1 – Context

• Thesis in CIFRE convention

• CNAM, laboratory : CEDRIC

• Company : AKHEROS

• Thesis subject: measuring the evaluation capacity and 
implementation of a semi-supervised hybrid SDIH in backdoor 
detection on embedded systems.
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2 – Main objectives

• Providing additional protection to embedded systems and IoTs

• Constantly increasing number

• Critical Features

• Learning and detection on the platform to be protected without the 
need for connection to an external source

• Reduction of attack vectors

• Better responsiveness
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2 – Objectives and constraints

• Detect known/unknown threats

• Public APT

• New attacks / 0 day

• Limited resources

• CPU / Mémoire / Persistant storage is o4en very limited

• No modification of existing application

• Legacy

• Certifiability
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3 – Similar works

• Existing studies :

• Target platform: IoT (connected objects) 

• Memory corruption attack [1]

• DDoS attacks, CPU stress [2]

• Use of machine learning algorithms

• Use HPCs (Hardware Performance Counters) as data flow for learning and 
detection algorithms
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3 – Similar works

• Avionics Domain[3]:

• Platform : IMA (Integrated Modular Avionics)

• Syscall ID + Timestamp

• Extracting data from the platform

• Posteriori learning

• Integration of models created on the platform

• Injection attack: modification of the program execution flow.
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3 – Similar works

• Comparative analysis[4]:

• IoT environment

• HPCs as input data
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Detection e2iciency comparison Cost comparison

Algorithm Rootkit Backdoor Trojan Average

BayesNet 88.1% 91.6% 99.0% 92.9%

MLP 94.0% 92.4% 89.8% 92.1%

OneR 81.5% 92.0% 99.0% 90.9%

JRip 84.8% 92.0% 66.3% 81.0%

J48 85.4% 92.0% 65.7% 81.0%

REPTree 82.8% 92.0% 66.3% 80.4%

SMO 91.4% 89.5% 98.8% 93.2%

Algorithm Latency Memory (block)

BayesNet 60ns 7645

MLP 1020ns 25667

OneR 10ns 292

JRip 20ns 156

J48 30ns 584

REPTree 30ns 377

SMO 220ns 2246



Setting up an embedded HIDS
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1 – HIDS

• HIDS (Host Intrusion Detection System) :

• Monitor the system it is embedded on for specific threats

• Scans files, event logs, running processes, etc.

• Signatures or behavioral profiles.

• Examples: Tripwire, OSSEC, and McAfee Host Intrusion Prevention.
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1 – HIDS

• Essential criteria for embeddedness in a critical environment :

• Real time

• Memory fingerprint

• Detection capacity

• O<line

• Legacy / certifiability / lifespan of embedded systems.

• Protection of know-how
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2 – Collect module

• Goal: Collect the data necessary for learning and detection

• Performance: Must be as least intrusive and fast as possible

• Data :

• Hardware Performance Counters (HPCs)

• OS errors

• System / API calls

• Communications / IO

• Memory
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3 – Learning module

• Steps:

• Choice of learning type: supervised, unsupervised, semi-supervised

• Choice of learning algorithm

• Creation of learning scenarios

• Creation of attack scenarios

• Impact analysis on application execution

• E<iciency analysis of selected data for attack detection
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Experimentation on an avionic module
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1 – Presentation of the experiment 

• Purpose: Is machine learning-based HIDS a viable approach to detect 
threats on a critical embedded system ?

• Validation criterias:

• Monitored application must not be disturbed by the collection / HIDS modules

• Monitored application must not be modified

• Maximum detection rate for a false positive rate of 0%
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1 – Presentation of the experiment 

• Material :
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1 – Presentation of the experiment 

•  Planned attacks :

• Pre-loaded attacks: changes to certain functionalities (trajectory calculation, GPS 
position, etc.).

• Injection attacks: random code, control-flow hijacking

• Passive attacks: variant of Spectre [5] (application memory leak, particularly the 
“cache timing”).

• Active attacks: Rowhammer [6] and its variants like Blacksmith [7].
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2 – Current progress

• Tasks:
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Description Progress

Validate the approach to determine the data to observe 100%

Modify the OS in order to collect the desired data 100%

Integrate the HIDS into the platform OS 100%

Optimize HIDS for this platform 100%

Create and play normal behavior learning scenarios 10%

Create and play attack scenarios to evaluate detection performance 10%



2 – Current progress

• Increase of the execution time : 82ns and 113ns for 170,000 items 
collected.

• Cost is considered tolerable for a critical context by our avionic 
partner.
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3 – Experiment results

• Goal: Validate the approach to select the best HPCs to collect

• Selected HPCs : 

• 6 out of 256 available, platform limitation

• Mainly focusing on memory management

• Training on 5 healthy datasets (flights of 30 minutes each)  :

• Cumulative learning time: 8 minutes and 24 seconds

• Number of models obtained: 17 for a total weight of 3.2 MB
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3 – Experiment results
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3 – Experiment results

• Validation of the behavioral basis:

• Freeze the models

• Analysis on 5 unlearned healthy flights (30 mins each)

• Results:

• Cumulative analysis time: 4 minutes and 34 seconds

• Average explanation: 50%

• Most interesting HPCs: L1D_TLB_REFILL, L1I_TLB_REFILL

• The explanation rate is low due to the small training sample.
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3 – Experiment results
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3 – Experiment results

• Infected flights :

• 10 flights (30 mins each)

• CPU time the4: 10 seconds every 15 seconds

• Results:

• Cumulative analysis time: 4 minutes 39 seconds

• Average explanation when no attack is present: 50%

• Anomalies detected: 100%

• Validation of HPCs :

• Top contributors in attack detection: L1D_TLB_REFILL, L1I_TLB_REFILL.

• Contribution rate: between 30 and 40%
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3 – Experiment results
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Conclusion

• Dynamic bayesian networks gives good detection results.

• Performance allows use in a critical embedded environment.

• Collection module impact is considered tolerable by our avionic 
partner.

• Next steps:

• Deepen the learning phase to obtain a better rate of explainability of normal 
behaviors.

• Expand the attack spectrum to validate the detection e<ectiveness.

• Propose remediation actions when an attack occurs.
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Thank you for your attention
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Appendices

• The AKHEROS machine learning algorithm is based on the use of 
dynamic Bayesian networks

• Semi-supervised learning

• No a priori knowledge

• Nor attacks

• Nor the system to monitor

• Creation of models of behaviors, non-incongruous and incongruous

• Generic approach

• IT activities

• Predictive maintenance

• Production lines
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Appendices

• Our platform has 4 cores clocked at 1.8GHz sharing a 2 MB L2 cache.

• 2 Cores are dedicated to the FMS application, 1 to the collection 
module and HIDS and the last to execute attacks.

• It is possible to observe 256 di2erent performance counters.

• However, only 6 are observable at the same time for the same core.
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