# THALES

# Securing Communications on the Field

PROTECTING GEO-DISTRIBUTED COMPUTING IN UNTRUSTED ENVIRONMENT

OLIVIER GILLES, DAVID FAURA, DANIEL GRACIA PEREZ THALES RESEARCH & TECHNOLOGY FRANCE



#### **IIoT versus IoT**

#### Common technologies

- Connectivity / dynamicity
- Open source/protocols/networks
- **Data** as an asset

#### Different needs

- > Criticality: must be safe & secure
- Possibly unfriendly environment
- Mainly Machine-to-Machine: real time support

#### Different goals

- Reactivity to clients/suppliers
- Process optimization

#### Specific security challenges

- Safety and security often conflict
- Low resources
- Attract state-level attackers



#### Military specificity

- Mostly consistent with Industry 4.0
- Low-availability networks



#### **Preventive maintenance**

- Periodic inspection
- Expensive and error-prone

#### Reactive maintenance

- Repair when fail
- Disruption of service, risk of major accident
- Specifity of railway: difficult access
  - Long distance between isolated sensors
- > Human intervention even more expensive
- IIoT + AI allows predictive maintenance
  - ➤ Optimization retroaction loop





#### **Catenaries**

- Most likely failure on high-speed trains
- Physical tension is the key
- Geo-distributed

#### **Real-time monitoring**

- Using track-side sensors
- Exploited by a analytics server / datalake
- Can be geo-distributed



# **Application to catenary monitoring**

#### **Catenaries**

- Most likely failure on high-speed trains
- Physical tension is the key
- Geo-distributed

#### Operational needs

- Group connectivity
- Interoperability

#### Real-time monitoring

- Using track-side sensors
- Exploited by a analytics server / datalake
- Can be geo-distributed

#### Security risks

- Physically accessible devices
- Open-network access (internet)





#### **OPC UA (2008)**

#### **>** Ambitions

- Unifying Industrial Ethernet
- Interoperability between field buses
- Introducing security

#### Open Platform Communications

- Only relies on open standards
- Evolving & customizable
- Focus on communications

#### Unified Architecture

- Information model for data definition
- Backed by a strong industrial consortium





#### Industrial networks & IIoT: OPC UA PubSub

#### Publish-subscribe OPC UA (PubSub)

- Nodes are Publishers or Subscribers
- Topic-Based communications & rights

#### Scalable & Flexible

- Broker-based or brokerless
- Enable flexible topologies
- > Reduce workload, low weight
- More adapted to dynamic systems

#### Timing performances

- OPCUA/TSN 802.1Qbv (2018)
- > 1 ms period with 40 ns jitter



#### Embeddability

- > Frame footprint: 17 B incl. UDP header
- > Client footprint: 150 to 500 KB
- ➤ Small RTOS support



#### Industrial networks & IIoT: OPC UA PubSub security

#### Secure

- Topic-based key & security
- > Separation of concern:
  - Secure Key Service (SKS) in charge of security
  - **Broker** in charge of performance (untrusted)

#### Security Key Service (SKS)

- Symmetric group key distribution
- > Keys lifecycle management
- > Perform client authentication



#### Clients (publishers/subscribers)

- Indirect connection through broker
- End-to-end, symmetric encryption (AES256)
- Initiate key renewal



# Client authentication by SKS

**OPC UA PubSub Security** 



Security Key

Server







#### Client authentication by SKS

Client send its certificate incl. public key







#### Client authentication by SKS

- Client send its certificate incl. public key
- SKS use public key to build a challenge
- Client uses its private key to answer
- > RSA2048









#### Client authentication by SKS

- Client send its certificate incl. public key
- SKS use public key to build a challenge
- Client uses its private key to answer
- > RSA2048





#### Key distribution by SKS

- SKS and client build a secure channel
- Diffie Hellman





#### Client authentication by SKS

- Client send its certificate incl. public key
- SKS use public key to build a challenge
- Client uses its private key to answer
- > RSA2048





#### Key distribution by SKS

- SKS and client build a secure channel
- Diffie Hellman
- SKS send the session keys to client





#### Client authentication by SKS

- Client send its certificate incl. public key
- SKS use public key to build a challenge
- Client uses its private key to answer
- > RSA2048

#### Key distribution by SKS

- SKS and client build a secure channel
- Diffie Hellman
- SKS send the session keys to client





#### Solution architecture overview

#### Gateway

- Connected to sensor through LoRaWAN
- Connected to analytics through LTE + public network

#### Security

Gateway-to-backend server encryption





#### **Threats**



[1] O. Gilles, D. Gracia Pérez, P.-A. Brameret, V. Lacroix, Securing IIoT communications using OPC UA PubSub and Trusted Platform Modules, Journal of Systems Architecture, 2023.





[1] O. Gilles, D. Gracia Pérez, P.-A. Brameret, V. Lacroix, Securing IIoT communications using OPC UA PubSub and Trusted Platform Modules, Journal of Systems Architecture, 2023.

## Threats: applying OPC UA security



[1] O. Gilles, D. Gracia Pérez, P.-A. Brameret, V. Lacroix, Securing IIoT communications using OPC UA PubSub and Trusted Platform Modules, Journal of Systems Architecture, 2023.



#### Threats: residual risk management





# Avoiding residual risk: leveraging on Secure Element

# Private key protected by Secure Element

- During generation
- > At rest
- > While using

#### Needed SE features

- Asymmetric key generation
- Secure storage
- Limited cryptography

#### **Implementation**

> ST33 TPM2





#### Integration into STIMIO RAILNET

- Mature industrial gateway (railway)
- > LoRA + LTE
- STM TPM integrated

#### OPC UA PubSub ensures

- Interoperability
- Flexible topology
- Reasonnable HW requirements
- > End-to-end encryption

## Security improvement

> Protection against attacker with physical access







## Going further

#### From continuous computing to continuous security

- Crossing networks with data integrity and mutual authentication
- Limited rights (besoin d'en connaitre)
- Early rejection of faulty messages
- A new node type is needed (OPC UA proxy)

#### Redundancy with security

- Ensuring « loose synchronization » of SKS
- Captured equipment cannot leak keys
- > Patent ongoing



Réf. TRT-Fr/STI/LSEC/OG - 21/11/2023

23





Réf. TRT-Fr/STI/LSEC/OG - 21/11/2023

# **Annexes**



#### Industrial networks: legacy and current protocols for M2M

#### Legacy: Fieldbuses

- > Ex: MODBUS/RTU, PROFIBUS-DP, CAN
- Serial link or proprietary bus
- Deterministic
- Periodic, static slots booking
- No security



#### Industrial Ethernet

- > Ex: MODBUS TCP, EtherNet/IP, PROFINET
- Leverage on Ethernet & IP availability
- On-demand bus booking
- Adapted lower layers
  - Impact on determinism mitigated
  - Support for hardened physical links
  - More than two nodes per link
- Security: Point-to-Point (TLS, DTLS)

#### OT/IT convergence

Cybersecurity



#### Industrial networks: OPC UA



#### Interoperable

- OS-Independent
- Data format + domain libraries
- Service-Oriented, Client-Server paradigm
- Communication-agnostic (Raw Ethernet, UDP, MQTT, HTTPS...)

#### Secure

- Standardized, build-in security
  - Authentication.
  - Encryption
  - Auditing
- Reviewed by BSI (Germany)



## Increased connectivity

- Connect existing industrial networks
- Connect to open networks
- IT/OT convergence



Réf. TRT-Fr/STI/LSEC/OG - 21/11/2023

# Security

THALES

#### Residual risks

- Threat 4.7: An attacker may try to access to a group key (or multiple ones) on a legitimate gateway => accept
- ➤ Threat 4.8: An attacker accesses to clear-text server nonce on a legitimate client gateway, and computes locally the session key to get access to the group keys in transit => accept
- Threat 6.1: An already compromised subscriber (e.g. a monitoring client) publishes (writing) into its group data instead of reading them => accept
- > Threat 6.2: An already compromised publisher (e.g. a monitoring client) subscribes (reading) to its group data instead of writing them => accept
- Threat 5.1: An attacker floods a SKS with connection requests in order to create a Denial of Service (DoS) for key distribution => ext. counter-measures
- > Threat 4.5: An attacker may extract a gateway's private key in order to set up a rogue gateway with legitimate credentials => avoid



#### **Embeddability: Bandwith**

#### UDP / Binary

- Different kind of messages, many optional fields
- Minimal overhead is 19 B (27 B over UDP)
- MQTT/TCP: 22 B
- CoAP/UDP: 12 B (most of the time over IPv6, 20 B increase)
- Still have to add Link-level protocol (24 B for Ethernet)

| Data profile                           | Frame size OPC-UA<br>PUBSUB Heavy | Frame size OPC-UA PUBSUB Light | Ratio |
|----------------------------------------|-----------------------------------|--------------------------------|-------|
| Non-secure Short Message (8 B)         | 85 B                              | 31 B                           | 63%   |
| Secure Short Message (8 B + signing)   | 117 B                             | 67 B                           | 42%   |
| Secure Medium Message (32 B + signing) | 149 B                             | 91 B                           | 39%   |
| Secure Long Message (1024 B + signing) | 1141 B                            | 1083 B                         | 5%    |



#### **Embeddability: Memory footprint**

#### **Experimental**

Down to 10 KB (ROM)

#### Commercial: different server profile

Systerel S2OPC: 160 KB (PUBSUB + Client/Server) + 4 KB/session + 16 KB/request

Matrikon OPC UA SDK

| Table 2: Minimum Server Footprint                                                   |     |             |  |
|-------------------------------------------------------------------------------------|-----|-------------|--|
| Profile Configuration                                                               |     | RAM<br>(kB) |  |
| Nano Embedded Device Server                                                         |     | 48          |  |
| Micro Embedded Device Server (4 Monitored items)                                    |     | 80          |  |
| Embedded Server (including security and full address space and 10 Monitored Items)  |     | 208         |  |
| Embedded Server (including security and full address space and 100 monitored items) | 675 | 320         |  |

<sup>\*</sup>Metrics obtained for ARM Thumb2 instruction set (Cortex-M4F), Atollic TrueSTUDIO 4.20, GCC =Os



#### OPC UA PubSub Stack: Safe & Secure OPC



#### **Embeddability**

- Down to 150 KB of RAM for a node
- Support Windows, Linux, FreeRTOS, Zephyr, VxWorks
- On-developpment TSN support

#### Safety & Security

- Formal proof of code with B method
- Deployed in EN50128 SIL2 environment
- Aims for EAL 4+ certification (ANSSI)
- > Integrating TRUST

#### **Business-ready**

- Deployed by Schneider Electrics, Renault
- Open-source & Free

#### Systerel



- Developped by a french PME
- Long-term partnership with Thales
- > Specialized in safety

